

Series 30,000 Rotary Process Valve

Company Profile

Vanessa has been successfully producing and marketing valves worldwide for almost four decades. After having been a subsidiary of Keystone, the company joined Tyco International Ltd. in 1997 to operate within one of its core business segments, Tyco Flow Control. In 2000, Vanessa became part of Tyco Valves & Controls Italia S.r.l., a leading European valve manufacturing group, which includes the Raimondi and Fasani brand names.

In 1975 Vanessa was the first company to introduce the revolutionary metal-to-metal seating technology into the market by offering the Series 30,000 Rotary Process Valve, a unique quarter turn, triple offset, zero leakage valve. This has enabled end users to cover a huge variety of applications in many different industries and has given Vanessa an enviable reputation world-wide.

Today, as from its inception, Vanessa is the international leader in the manufacture of high technology rotary process valves.

The achievements of the Vanessa valve in the international market have allowed a constant growth of the company. The reasons for its success can be attributed to the use of advanced technology, sophisticated quality control systems and above all the exclusive design of the Series 30,000.

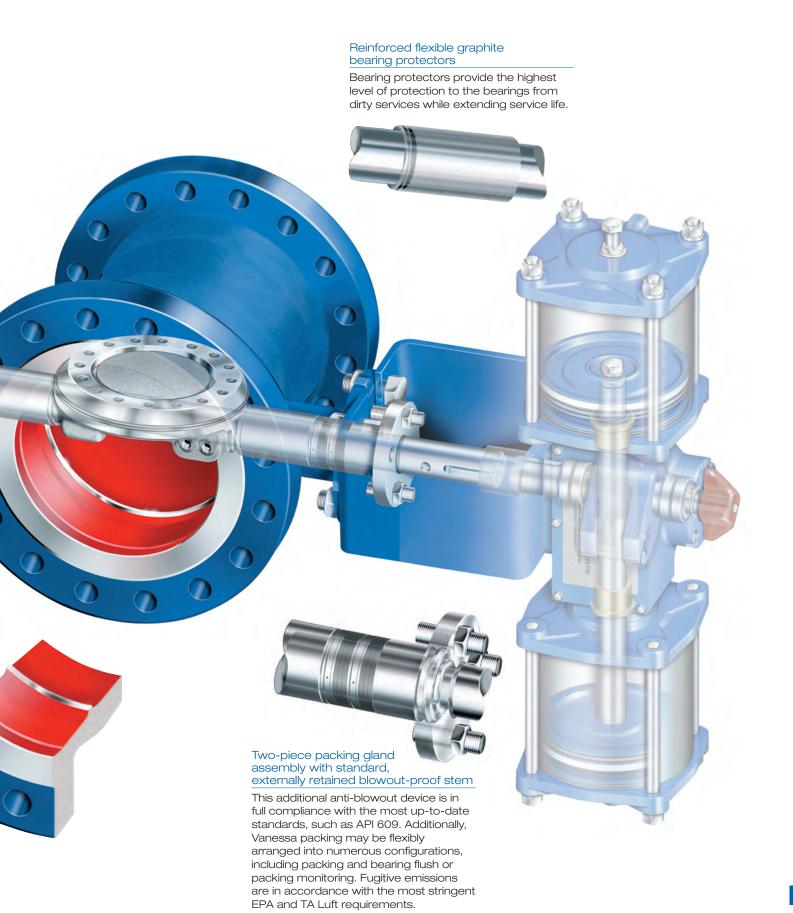
Vanessa is committed to a constant improvement of its technology and equipment, an attitude which has contributed to the highest levels of performance of its products and the satisfaction of its customers.

Series 30,000 metal seated,

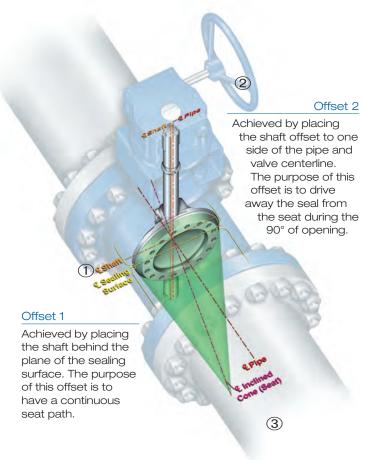
High-cycle thrust bearing

The high-cycle thrust bearing assembly rigidly fixes a super hardened thrust washer to the shaft while maintaining an intermediate sliding thrust washer, to extend an already long cycle life.

Resilient metal seal


The flexible, resilient metal seal is located on the disc and is secured but not locked in position, so that the metal seal has the freedom to flex. The seal ring is located with a reference pin.

Hardfacing ensures durability in the broadest range of applications, including higher temperatures and dirtier services. Stellite® seat is standard on the complete range of valves.


zero leakage Rotary Process Valves

Triple Offset

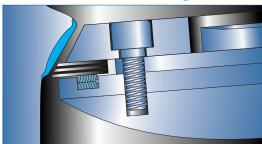
A typical high performance butterfly valve is manufactured with either a single or double offset shaft design. These shaft offsets are created by designing the valve with the shaft located behind the centerline of the sealing surface and slightly to one side of the pipe centerline. The purpose of these offsets is to reduce the rubbing and thus the wear between the seat and seal to approximately 20 degrees of travel.

Vanessa adds a unique third (inclined cone – offset 3) to allow not only camming, but also to completely eliminate all seat-to-seal rubbing throughout the valve's entire 90 degrees of rotation.

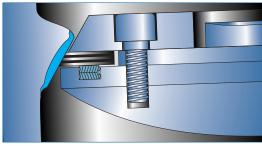
Offset 3

Achieved by inclining the seat and seal cone centerline in respect of the pipe and valve centerline. This third offset completely eliminates rubbing. Any chances of associated wear and leakage between the seat and disc-mounted seal ring during travel are non-existent.

Vanessa optimizes the contact angle between the seat and seal for enhanced performance. Most gate valves provide a contact angle of between 3 and 6 degrees. Such designs create a locking taper that can cause dangerously high seating or unseating torques.


Vanessa's contact angle is above the locking taper range and its geometry eliminates the possibility of jamming, ensuring the forces necessary to seat or unseat the valve do not substantially vary over the service life of the valve.

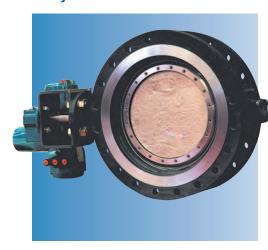
Resilient Metal Seal


The Vanessa Series 30,000 utilizes a resilient, duplex stainless steel seal ring installed in the disc assembly to provide true zero leakage*. The resilience of the seal ring is achieved through the radial compression of the seal ring as torque is applied to the valve shaft. The seal and seat contact surface is "cone-in-cone," where both cones are inclined. The angle of contact between the seal and the seat allows the torque applied to the shaft to radially compress the disc seal ring. By maintaining uniformity of contact angles and elasticity in the seal ring, the entire circumference of the seat is evenly loaded to achieve the tightest shutoff with the least amount of torque. Torque seating allows the Vanessa 30,000 valve to shutoff completely, regardless of the direction of flow or line pressure.

 Zero Leakage means no visible leakage during test duration as per API 598 and/or API 6D.

Resilient Metal Seal Ring

Before seat contact


Seated

Design Standards

Quality Assurance:	ISO 9001
Environmental Management System:	ISO 14001
Compliance with:	Pressure Equipment Directive PED 97/23/EC, category III. Cat. IV mod. H1 available on request.
Design:	ASME B16.34, API 609, DIN 3840, EN 593
Face-to-Face:	ISO 5752, EN 558, ASME B16.10, API 609
Flange Drilling:	ASME B16.5, ASME B16.47, ISO 7005, DIN 2501, EN 1092
Testing:	API 598, API 6D, ISO 5208
Fire Test:	API 607, 4th Edition
Marking:	MSS SP 25, EN 19

Valve Configuration and options

Series 30,000 Rotary Process Valve

Size Range

3" to 112" [80 to 2,800 mm]

Pressure Ratings

ASME 150 to 900/DIN PN 10 to 100 ISO PN 20 to 150

Body Styles

Double Flanged, Lugged, Wafer, Buttweld.

Temperature Range

-425 to +1500°F [-60 to +450°C] for stainless steel body material. Other temperatures are applicable depending on valve body material.

Body Materials

WCB, CF8M, LCB, WC6, CF3M, Duplex, Superduplex, Inconel®, Alloy 20, Monel®, Incoloy®, Hastelloy®, C5, Titanium.

Features

- Torque generated elastic metal seal provides zero leakage performance, in compliance with API 598 and/or API 6D
- Quarter turn non-rubbing design is achieved by triple offset geometry, completely eliminating all seat to seal rubbing throughout the 90 degree rotation of the disc.
- Stellite® hardfaced standard integral seat results in broader applications, longer valve life and less maintenance.
- Single-piece cast body, with face-to-face dimensions in accordance to ISO 5752, API 609 and ASME B16.10 provides interchangeability with gate, ball and plug valves.
- Integral position indicators on the stem and on the top mounting flange ensure positive disc position indication, in accordance with API 609
- All metal construction and sealing and zero leakage performance translate into an inherently firesafe valve.
- Long-length hardened bearings, incorporating a standard reinforced, die-formed, flexible and replaceable graphite bearing protector ensure additional reliability.
- Internally and externally retained, triple blow-out prevention.

Cryogenic Configuration

Body Styles, Sizes 3" thru 66" and Larger

Double Flanged, Lugged, Buttweld, Wafer

Pressure Ratings

ANSI 150# to 900#

Temperature range

Cryogenic down to -425°F [-254°C]

Body Materials

CF8M and other stainless steel materials suitable for cryogenic temperatures.

Features

- The metal sealing is virtually unaffected by the very low temperatures: the valve performance and the operating torque are the same at both room and cryogenic temperatures.
- · Standard solid seal ring.
- The cryogenic valve design includes an extended bonnet, removing the packaging from the cold temperature zone. This minimizes the risk of fugitive emissions.
- Vanessa cryogenic valves are type approval tested according to Shell Tec. Spec. no. T-2.253.730, up to ASME class 600
- · All valves are tested in the fully equipped facilities for cryogenic testing at Vanessa plant.
- Ideal for any application involving media at very low temperatures, such as LNG, LPG, liquid hydrogen and liquid oxygen.

High Temperature Configuration

Body Styles

Double Flanged, Lugged, Buttweld

Temperature range

Up to +1500°F [+815°C]

Body Materials

WC6, CF8M and other stainless steel materials suitable for high temperatures operations.

Features

- Ideal for high temperature application up to +1500°F [+815°C].
- Customized to compensate the thermal expansion of the valve components and to withstand the creep of materials at temperatures over 1112°F [600°C].
- Standard solid seal ring.
- The extended bonnet helps maintain the packing operating temperature at normal levels, and this greatly reduces any risk of fugitive emissions.
- The actuator remains protected from extremely high line temperature.
- The reliability of the valve performance is guaranteed by the appropriate high temperature materials selec-
- The high temperature configuration is widely used in oil and gas processing, power and chemical fields, usually for services involving hot gases and steam.

Steam Jacketed and Traced Configuration

Body Styles

Double Flanged

Temperature range

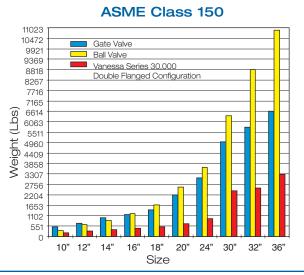
Up to +842°F [+450°C]

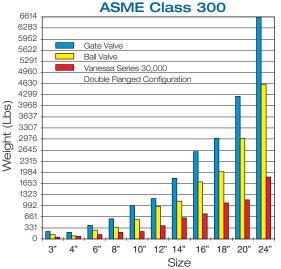
Body Materials

WCB, CF8M. Other materials available on request.

Features

- An excellent configuration to prevent any fluid crystallization in presence of particular media.
- The heat diffused by valve body jacket reaches all the critical areas, in particular the valve seat and the bearings area.
- The jacketed valve is manufactured using the double flanged body style. Vanessa recommends the use
 of a long face-to face pattern which increases the heating action.
- The jacket is dimensioned according to ASME Boiler and Pressure Vessel Code.
- For particularly harsh applications, Vanessa advises to use its Steam Jacketed and Traced Trim configuration. The addition of the traced trim provides an internal heating system obtained by drilling the shaft from top to bottom, to maximize the heat transfer to shaft and bearings
- The jacketed configuration is targeted to usage in sulphur recovery units, and in any application with high fluid crystallization risk.


Pressure/Temperature


		nperatur					<u> </u>	000	Temp. °C
Temp. °F	CS	s 150 SS	Class 300 Clas CS SS CS		ss 600 SS	S 600 Class 900 SS CS SS			
-20 to 100	285	275	740	720	1,480	1,440	2,220		-29 to 8
200	260	240	675	620	1,350	1.240	2.205	1.860	93
300	230	215	655	560	1,315	1,120	1,970	1,680	149
400	200	195	635	515	1,270	1,030	1,900	1,540	204
500	170	170	600	480	1,200	955	1,795	1,435	260
600	140	140	550	450	1,095	905	1,640	1,355	316
650	125	125	535	445	1,075	890	1,610	1,330	343
700	110	110	535	430	1,065	865	1,600	1,295	371
750	95	95	505	425	1,010	845	1,510	1,270	399
800	80	80	410	415	825	830	1,235	1,245	427
850	65	65	270	405	535	810	805	1,215	454
900	50	50	170	395	345	790	515	1,180	482
950	35	35	105	385	205	775	310	1,160	510
1000	20	20	50	365	105	725	155	1,090	538
1050	_	20 (1)	_	360	_	720	_	1,080	566
1100	-	20 (1)	-	325	-	645	-	965	593
1150	_	20 (1)	_	275	_	550	_	825	621
1200	_	20 (1)	_	205	_	410	_	620	649

Notes (Pressure/Temperature Chart)

- WCB permissible but not recommended for prolonged use above 800°F [427°C].
- (1) For welding end valves only. Flanged end rating terminates at 1000°F [538°C].

Weight Comparison with Gate and Ball Valves

Leakage Comparison (Seat Tightness Test)

		Is	solation Valve	es	Control Valves FCI 70-2-1998 and IEC 534-4-1982							
			Test Pressure	= 1.1 * Design	Differential Pressu	Differential Pressure Test Pressure = 3.50 bar = 50.8						
		All Di	fferential Press	sures	e.g.: Design Øp =	: 51bar/739.5 psi ⁽⁴⁾	e. g.: Trim	"C" (CI. 300) ⁽⁵⁾	All Pressur	e Classes(7)		
Valve	Size	Vanessa	API 598	API 598	FCI/IEC	IEC	FCI/IEC	FCI/IEC	FCI/IEC	IEC		
mm	inches	Standard(1)	Metal Seated	Metal Seated	Class V	Class VI	Class IV	Class IV	Class V	Class VI		
			(Water)(2)	(Air)(3)	(Water)	(Air)	(Water)	(Air)	(Water)	(Air)		
80	3"	0	0.8	2.6	1.2	15	172	5680	0.08	0.9		
200	8"	0	1.3	6.0	3.3	114	2290	75530	0.20	7.1		
300	12"	0	1.3	6.0	4.9	269	6550	216260	0.30	16.8		
600	24"	0	1.8	8.4	9.8	1078(6)	29620	977680	0.61	67.3(6)		
900	36"	0	1.8	8.4	14.7	2427(6)	778050	2568070	0.91	151.4 ⁽⁶⁾		

All leakage values are expressed in ml/min.

Notes:

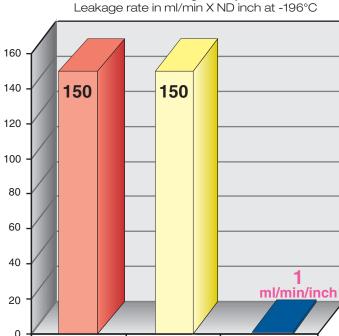
- Vanessa performs seat tightness test on each manufactured valve with water and air in both directions, covering all the requirements of API 598, API 6D and ISO 5208.
- 2. According to API 598 standard, 1 ml of water is equivalent to 16
- According to FCI 70-2 and IEC 534-4 standards, 1 ml of air is equivalent to 6.67 "bubbles".
- 4. FCI 70-2 and IEC 534-4 leak rates depend on the test differential pressure.
- 5. Class IV leak rates depend on the "valve rated capacity", and therefore they are function of the valve trim rating.
- 6. Leak rates have been extrapolated using the relationship between seat diameter and leakage factors suggested in Note 2 of Table IV of
- Class VI leak rates depend on the Nominal Diameter, therefore they are independent of the pressure classes.

Cryogenic Test

Resilient METAL Seat No Teflon® or Kalrez®

The Vanessa Series 30,000 valve, Cryogenic Version provides for unmatched tightness even when compared to soft seated designs.

The tightness capability is achieved as a direct result of the resiliency of the metal seal ring. This seal ring resiliency is generated by the radial compression of the seal as torque is applied to the valve shaft.


The Vanessa Series 30,000 valve, therefore, provides shutoff regardless of the direction of flow or line pressure.

Unlike Teflon® or Kalrez®, the all metal seal is virtually unaffected by the very low temperatures common in cryogenic service. Using an all metal seal, valve performance and operating torque are the same at both room and cryogenic temperatures.

All soft seat materials become hard and brittle at cryogenic temperatures, this increases their vulnerability to damage, and decreases their life expectancy.

Note: Teflon® and Kalrez® are both registered trademarks of E.I. duPont de Nemours & Company.

Helium Leakage Comparison

BS 6364 Test

Spec.

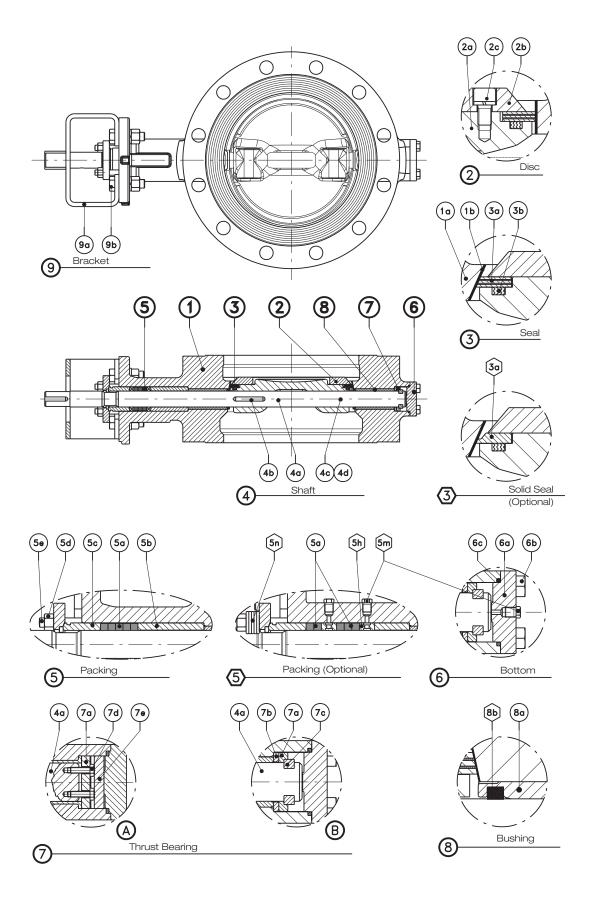
Vanessa

Test Results

Shell Test

Spec.

Inherently Firesafe Design


The Vanessa Series 30,000 is an all metal valve complete with metal-to-metal sealing elements. It is considered INHERENTLY firesafe by virtue of the fact that its performance does not change during firesafe simulation tests.

Tests have been carried out in accordance with the most stringent international firesafe standard such as API 607 and to the specific requirements of major oil companies such as Elf and Exxon. These tests confirm that the valves performance conforms to the standards and does not vary as a result of the fire. The Vanessa valves tested were ZERO LEAKAGE before, during and after the fire test.

Sectional Drawing - Basic Configuration

Materials of Construction (ASTM Standard) Basic Configuration

Item Note	Description	Body in Carbon Steel	Body in Stainless Steel
1a	Body	ASTM A216 WCB	ASTM A351 Gr.CF8M
1b	Body Seat	Stellite® Gr.21 Weld Overlay	Stellite® Gr.21 Weld Overlay
2aº	Disc	ASTM A216 WCB Nickel Plated or ASTM A105 Nickel Plated	ASTM A351 Gr.CF8M or ASTM A182 type F316
2b	Retainer Flange	ASTM A516 Nickel Plated	AISI 316
2c	Screw	ISO 3506 A4 (AISI 316)	ISO 3506 A4 (AISI 316)
3a•	Seal Ring	UNS S31803 (Duplex) + Graphite	UNS S31803 (Duplex) + Graphite
3b•	Disc Spiral Wound Gasket	AISI 316 + Graphite	AISI 316 + Graphite
4a	Shaft	ASTM A182 F6a	ASTM A479 UNS S20910 (Nitronic® 50)
4b	Disc Key	AISI 410	UNS S20910
4c	Pin	AISI 410	UNS S20910
4d	Pin Retainer	AISI 316	AISI 316
5a•	Packing	Graphite	Graphite
5b	Spacer	AISI 316	AISI 316
5c	Packing Bushing	AISI 316	AISI 316
5d	Stud Nut	ISO 3506 A2 (AISI 304)	ISO 3506 A2 (AISI 304)
5e	Stud Bolts	ISO 3506 A2 (AISI 304)	ISO 3506 A2 (AISI 304)
6a	Bottom Flange	ASTM A516	ASTM A240 Type 316
6b	Screw	ISO 3506 A2 (AISI 304)	ISO 3506 A2 (AISI 304)
6c•	Bottom Spiral Wound Gasket	AISI 316 + Graphite	AISI 316 + Graphite
7a	Thrust Bearing	AISI 316 or AISI 410	UNS S20910
7b	Thrust Bearing Washer	AISI 316	AISI 316
7c	Key	AISI 316	AISI 316
7d	Screw	ISO 3506 A4 (AISI 316)	ISO 3506 A4 (AISI 316)
7e	Unloosening Washer	AISI 410	AISI 316
8a	Bearing	AISI 304 Hard Faced	AISI 316 Hard Faced
9a	Bracket	Carbon Steel	Carbon Steel
9b	Screw	Alloy Steel	Alloy Steel

Options (available upon request)

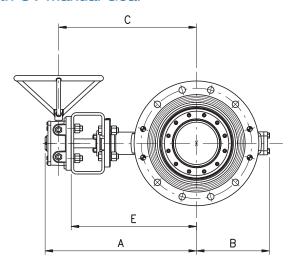
Bearing Protector

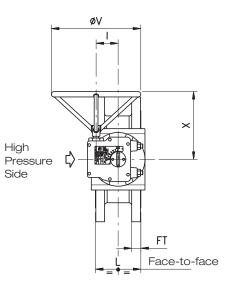
8b	Bearing Protector	Reinforced Graphite	Reinforced Graphite						
Bearing and Packing Flushing									
5h	Lantern Ring	AISI 316	AISI 316						
5m	Plug	AISI 316	AISI 316						
Live Loade	ed Packing								
5n	Belleville Spring	Alloy Steel	Alloy Steel						
Solid Seal	Solid Seal Ring								
3a•	Solid Seal Ring	UNS S17400	UNS S20910 (Nitronic® 50)						

Notes

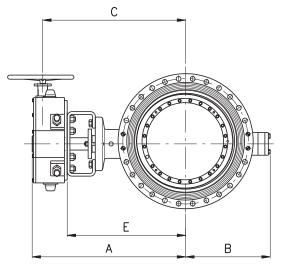
- $\ensuremath{\square}\xspace$ The selection between cast or forged material depends on valve size.
- •: Suggested spare parts.

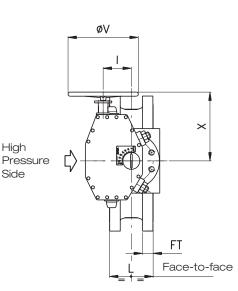
The Vanessa Series 30,000 can be manufactured as standard in the following materials: WCB, CF8M, LCB, WC6, CF3M, Aluminum Bronze, Duplex, 250 SMO.

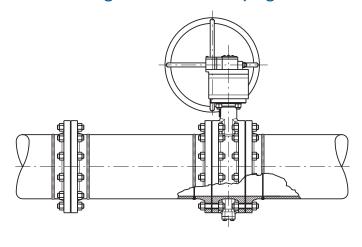

Additionally, the Vanessa Series 30,000 can be manufactured also in the following materials: Monel®, Incoloy®, Hastelloy®, Alloy Steel WC6-WC9, Superduplex, Inconel®, Alloy 20, C5, Titanium.


Contents may change without notice.

Series 30,000 Metal Seated, Zero Leakage Rotary Process Valves


Vanessa Series 30,000 Double Flanged Valve


With OV Manual Gear



With MAGA Manual Gear

Double Flanged installed on Piping

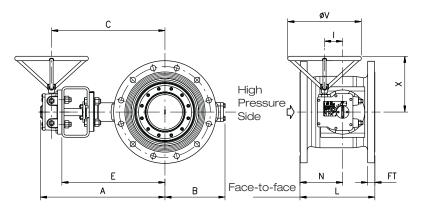
Notes:

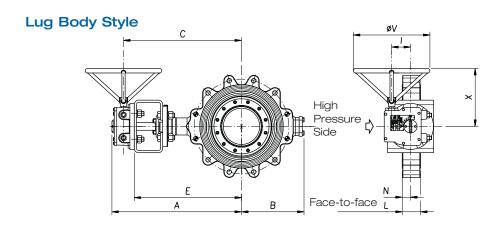
High

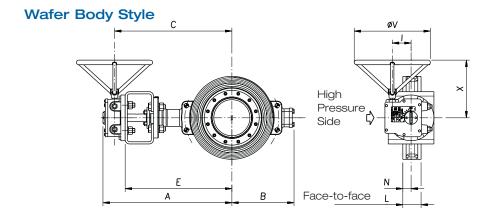
Side

- 1. Suggested orientation is with the valve shaft horizontal or inclined from vertical.
- 2. For service above 392°F [200°C] valve body should be insulated to limit body-to-trim differential temperature to 212°F [100°C].
- 3. All dimensions are in inches and weight is in pounds.
- 4. Please consult Vanessa for other sizes.

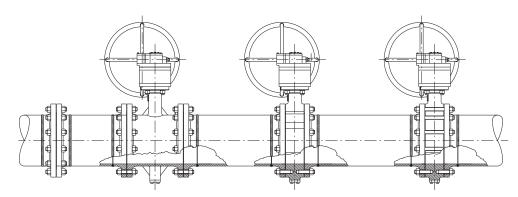
Vanessa has manufacturing experience for much larger sizes than those indicated (for example: 112"/Cl.150, 56"/Cl.300, 48"/Cl.600, 36"/Cl.900). Please consult factory for further information.


Stellite® is a registered trademark of Stoody Deloro Stellite, inc.


Double Fla	anged - I	Face-to-	face IS	D 5752	Table 1	Col. 13 - Body D	rilling	ASME	B16.5	CI.1 <u>50 - T</u>	rim B		
Size		Valve	e Dimen	sions		Gear Type		Gear E	Dimensio	ns	We	eight	
mm inch	Α	В	E	L	FT		С	I	X	ØV	Valve	Total	
80 3"	13.37	4.87	10.24	4.5	0.94	OV 10-18	11.75	2.25		5	48	63	
100 4"	14.62	5.5	11.42	5	0.94	OV 10-18	12.87	2.25		5	61	77	
150 6" 200 8"	16.12	6.5	12.99	5.5	1	OV 10-18	14.5	2.25		5	88	103	
200 8" 250 10"	18.75 20.25	8.37 9.62	15.16 16.73	6 6.5	1.19 1.25	OV 50-28 OV 50-28	16.75 18.25	2.62 2.62				158 207	
300 12"	23.25	11.25	19.29	7	1.23	OV 100-35	21.25	3.37				308	
350 14"	24.62	12.25	20.67	7.5	1.37	OV 100-35	22.62	3.37				394	
400 16"	26.37	13.75	21.46	8.5	1.44	OV 200-45	23.62	4.62			436	502	
450 18"	27.75	15.12	22.83	8.75	1.56	OV 200-45	25	4.62	14.62	2 23.5	504	570	
500 20"	30.12	16	25.2	9	1.69	OV 200-50	27.37	4.62	14	27.5	679	745	
600 24"	33.25	19	27.17	10.5	1.87	OV 400ER-55	29.5	5.12	1	11.75	954	1056	
Double Fla	anged - I	Face-to-	face IS	D 5752 T	Table 1	Col. 13 - Body D	rilling	ASME	B16.47	Series A	A CI. 150	- Trim B	
Size		Valve	e Dimen	sions		Gear Type		Gear	Dimens	sions		We	eight
nm inch	Α	В	E	L	FT			С	1	X	ØV	Valve	Total
700 28"	42.5	20.62	32.5	11.5	2.81	MAGA 1000C-9	O 3!	9.62	7.87	19.62	17.75	1690	2032
750 30"	44	24.25	34	12.53	2.94	MAGA 1000C-9	0 4	1.12	7.87	19.62	17.75	2182	2524
800 32"	45	25.25	35	12.53	3.19	MAGA 1000C-9		2.12	7.87	19.62	17.75	2568	2910
900 36"	51.37	26.5	39.62	13	3.53	MAGA 2000C-11				26.37	27.5	3295	3880
1000 40"	53.37	29.12	41.5	16.16	3.56	MAGA 2000C-12			10.37	26.37	27.5	4486	5070
1050 42"	54.5	29.75	42.75	16.16	3.81	MAGA 2000C-12			10.37	26.37	27.5	4750	5335
1200 48"	65 60 5	34.12	49.87	18.5 20.87	4.25	MAGA 14KR		7.5	7.87	38	32.25	6713	8134
1350 54" 1500 60"	69.5 74.5	38.75 44.62	54.37 59	23.62	4.75 5.19	MAGA 14KR MAGA 18KR		61.87 6.62	7.87 9	38 41.62	32.25 2.25	9479 12654	10901 14407
	7 4.0	UZ			J.13			0.02		F1.UZ		12004	1+07
Double Fla	anged - I	Face-to-	face IS	5752	Table 1	Col. 13 - Body D	rilling	ASME	B16.5	CI.300 - T	rim C		
Size		Valve	e Dimen	sions		Gear Type		Gear	Dimens	sions		We	eight
nm inch	А	В	E	L	FT			С	I	X	ØV	Valve	Total
80 3"	13.37	4.87	10.24	4.5	1.12	OV 10-18		1.75	2.25	6.5	5	48	63
100 4"	14.62	5.5	11.42	5	1.25	OV 10-18		2.87	2.25	6.5	5	72	88
150 6"	17.37	7.5	13.78	5.5	1.44	OV 50-28		5.37	2.62	8.62	11.75	134	158
200 8"	20.37	9.25	16.34	6	1.62	OV 100-35		8.25	3.37	13.37	19.75	189	218
250 10" 300 12"	21.87 24.25	10.75 12.25	17.91 19.29	6.5 7	1.87 2	OV 100-35 OV 200-45		9.87 1.5	3.37 4.62	13.37 14.62	19.75 23.5	220 385	249 451
350 12	26.37	13.25	21.46	7.5	2.12	OV 200-43		3.62	4.62	14.02	27.5	626	692
400 16"	28.75	15.37	22.64	8.5	2.25	OV 400ER-55	2		5.12	16.5	11.75	749	850
450 18"	32.12	16.62	25.98	8.75	2.37	OV 400ER-65		8.37	5.12	21.87	19.75	1073	1177
500 20"	33.62	18.12	27.56	9	2.5	OV 400ER-65		9.87	5.12	21.87	19.75	1166	1269
600 24"	39.12	20.87	30.91	10.5	2.75	MAGA 400C-75	34	4.75	3.87	13.75	17.75	1838	1992
Double Ele	angod - I	Faco to	faco IS) 5752 I	Table 1	Col. 14 - Body D	rilling	ACME	B16.5.0	CI 600 - T	rim D		
Size	angeu - I		e Dimen		rable 1	Gear Type	ming		Dimens			۱۸/۵	eight
mm inch	А	B	E Dimen	L	FT	Gear Type		C		X	ØV	Valve	Total
80 3"	12.37	5.37	9.25	7.09	1.25	OV 10-20	1/	0.75	2.25	6.5	6	70	85
100 4"	15.25	7.25	11.75	7.47	1.5	OV 50-30		3.25	2.62	8.62	11.75	145	169
150 6"	18	9.37	14	8.28	1.87	OV 100-40		5.87	3.37	13.37	19.75	266	295
200 8"	20.87	10.37	16	9.06	2.19	OV 200-45		8.12	4.62	14.62	23.5	436	502
250 10"	25.25	12.87	19.12	9.84	2.5	OV 400ER-55		1.5	5.12	16.5	11.75	656	758
300 12"	29.5	14.37	21.12	10.62	2.62	MAGA 400C-60) 2	5	3.87	13.75	17.75	833	987
350 14"	32.25	15.37	24	11.41	2.75	MAGA 400C-70		7.87	3.87	13.75	17.75	981	1135
400 16"	36.75	17.37	26.75	12.22	3	MAGA 1000S-75		3.87	7.87	19.62	17.75	1477	1818
450 18"	36.87	18.12	26.87	13	3.25	MAGA 1000C-9			7.87	19.62	17.75	1653	1995
500 20" 600 24"	43.12 46.62	20.75	31.25 34.87	3.78 15.34	3.5 4	MAGA 2000S-10 MAGA 2000C-12			10.37 10.37	26.37 26.37	27.5 27.5	2204 3196	2788 3780
27	10.02	5	5 1.07	.5.54			J +	J U		_0.0,		3.00	5,50
	anged - I				Table 1	Col. 8 - Body Dri	lling A				im E	14/	i ode t
Size mm inch	А	Vaive B	e Dimen: E	sions L	FT	Gear Type		Gear	Dimens	sions X	ØV	vve Valve	eight Total
						0)/100 10							
150 6"	18	9.37	14	8.84	2.19	OV 100-40		5.87 0.75	3.37	13.37	19.75	368 654	396 756
200 8" 250 10"	24.5	11.5 13.62	18.37	10.81	2.5	OV 400ER-55		0.75	5.12	16.5	11.75 17.75	654 848	756
300 12"	28.75 38.87	18.87	20.5 28.87	12.78 14.75	2.75 3.12	MAGA 400C-60 MAGA 1000S-70		4.25 6	3.87 7.87	13.75 19.62	17.75 17.75	848 1296	1003 1638
350 12 350 14"	36.87	18	26.87	16.72	3.12	MAGA 1000S-70			7.87	19.62	17.75	1752	2094
400 16"	38.75	19.37	28.75	18.69	3.5	MAGA 1000C-90		5.87	7.87	19.62	17.75	2707	3048
450 18"	42.12	20.12	30.37	19.69	4	MAGA 2000C-12				26.37	27.5	3179	3763
500 20"	46.12	23.25	34.25	22.62	4.25	MAGA 2000C-12			10.37	26.37	27.5	4250	4834
										20.07	20.05		7600


600 24" 55.75 26.5 40.5 26.56 5.5 MAGA 14KR 48.12 7.87 38 32.25 6267 7689

Series 30,000 Metal Seated, Zero Leakage Rotary Process Valves


Double Flanged Body Style (Face-to-Face ASME B16.10)

Double Flanged Body Style (Face-to-Face ASME B16.10), Lug and Wafer installed on Piping

Double Flanged - Face-to-Face ASME B16.10 Table 1 Col.7 Body Drilling ASME B16.5 Cl.150 - Trim B

Size	Valve	Dimens	sions	Weight
mm inch	L	Ν	FT	Valve Total
80 3"	8	4.87	0.94	50 66
100 4"	9	3.5	0.94	66 81
150 6"	10.5	4	1	79 94
200 8"	11.5	4.12	1.12	154 178
250 10"	13	5.12	1.19	216 240
300 12"	14	6	1.25	306 335
350 14"	15	6.87	1.37	410 438
400 16"	16	7.62	1.44	504 570
450 18"	17	8.5	1.56	593 659
500 20"	18	9	1.69	782 848
600 24"	20	9	1.87	1111 1212

Double Flanged - Face-to-Face ASME B16.10 Table 2 Col.10 Body Drilling ASME B16.5 Cl.300 - Trim C

Si	ze	Valve	Valve Dimensions			ight
mm	inch	L	Ν	FT	Valve	Total
80	3"	11.12	7.75	1.12	57	72
100	4"	12	3.75	1.25	88	103
150	6"	15.88	4.25	1.44	174	198
200	8"	16.5	5	1.62	253	282
250	10"	18	5.5	1.87	299	328
300	12"	19.75	6	2	511	577
350	14"	30	22.5	2.12	875	941
400	16"	33	24.37	2.25	1060	1161
450	18"	36	26.12	2.37	1558	1662

Lugged - Face-to-Face API 609 CL.150 Body Drilling ASME B16.5 Cl.150 - Trim B

		710 = 1010				
Siz	:e	Valve Dim	nensions	We	ight	
mm	inch	L	Ν	Valve	Total	
80	3"	1.88	0.81	28	44	
100	4"	2.12	0.94	37	52	
150	6"	2.25	1	50	66	
200	8"	2.5	1.12	79	103	
250	10"	2.81	1.25	108	132	
300	12"	3.19	1.5	182	211	
350	14"	3.62	1.75	257	286	
400	16"	4	1.94	352	418	
450	18"	4.5	2.19	427	493	
500	20"	5	2.5	595	661	
600	24"	6.06	3.06	853	954	

Lugged - Face-to-Face API 609 CI. 300 Body Drilling ASME B16.5 CI. 300 - Trim C

5	Size	Valve	Dimensions	s W	/eight	
mn	n inch	L	Ν	Valve	Total	
8	Э 3"	1.88	0.81	39	55	
10	O 4"	2.12	0.94	48	63	
15	0 6"	2.31	1	90	114	
20) 8"	2.88	1.25	123	152	
25	O 10"	3.25	1.44	169	198	
30	D 12"	3.62	1.56	262	328	
35	O 14"	4.62	2.37	559	626	
40	O 16"	5.25	2.56	661	762	
45) 18"	5.88	2.87	1003	1106	
50	20"	6.25	2.81	1100	1203	
60	24"	7.12	3.25	1737	1891	

Wafer - Face-to-Face API 609 CI.150 Body Drilling ASME B16.5 CI.150 - Trim B

Siz	е	Valve Dir	mensions	We	ight
mm	inch	L	Ν	Valve	Total
80	3"	1.88	0.81	30	46
100	4"	2.12	0.94	33	48
150	6"	2.25	1	44	59
200	8"	2.5	1.12	74	99
250	10"	2.81	1.25	99	123
300	12"	3.19	1.5	160	189
350	14"	3.62	1.75	213	242
400	16"	4	1.94	271	337
450	18"	4.5	2.19	361	427
500	20"	5	2.5	485	551
600	24"	6.06	3.06	714	815

Wafer - Face-to-Face API 609 Cl. 300 Body Drilling ASME B16.5 Cl. 300 - Trim C

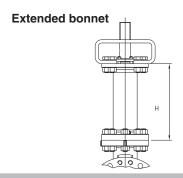
Siz	e	Valve D	Dimensions	Weight		
mm	inch	L	Ν	Valve	Total	
80	3"	1.88	0.81	30	46	
100	4"	2.12	0.94	33	48	
150	6"	2.31	1	63	88	
200	8"	2.88	1.25	110	138	
250	10"	3.25	1.44	165	194	
300	12"	3.62	1.56	240	306	
350	14"	4.62	2.37	361	427	
400	16"	5.25	2.56	502	604	
450	18"	5.88	2.87	628	731	
500	20"	6.25	2.81	756	859	
600	24"	7.12	3.25	1130	1285	

Notes:

- 1. For the dimensions A, B, E, and for Gear Selection and dimensions, please refer to the relevant figures in the previous Double Flanged tables.
- 2. Suggested orientation is with the valve shaft horizontal or inclined from vertical.
- 3. For service above 392°F [200°C], valve body should be insulated to limit body-to-trim differential temperature to 212°F [100°C].
- 4. All dimensions are in inches and weight is in pounds.
- 5. Please consult Vanessa for other sizes.

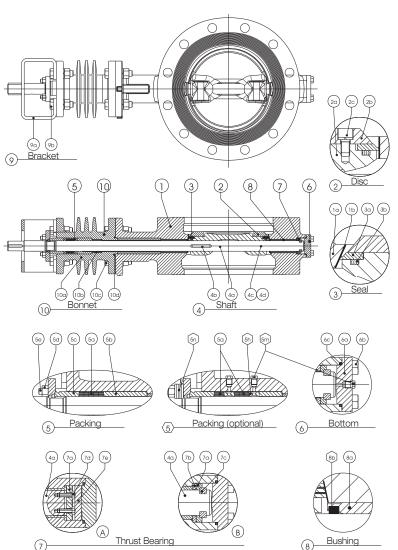
Cryogenic Configuration

Mater	rials selection	
Item	Description	Material
1a	Body	ASTM A 351 CF8M
1b	Body Seat	Stellite® gr. 21 Weld Overlay
2a ⁿ	Disc	ASTM A 351 CF8M or ASTM A 182 gr. F316
2b	Retainer Flange	AISI 316
2c	Screw	ISO 3506 A4 (AISI 316)
3a•	Seal Ring	UNS S20910 or UNS S21800
3b•	Disc Spiral Wound Gasket	AISI 316 + Graphite
4a	Shaft	ASTM A479 Type XM19
4b	Disc Key	UNS S20910
4c	Pin	UNS S20910
4d	Pin Retainer	AISI 316
5a•	Packing	Graphite
5b	Spacer	AISI 316
5c	Packing Bushing	AISI 316
5d	Stud Nut	ISO 3506 A2 (AISI 304)
5e	Stud Bolts	ISO 3506 A2 (AISI 304)
6a ^o	Bottom Flange	ASTM A 351 CF8M or ASTM A 240 gr. F316
6b	Screw	ISO 3506 A2 (AISI 304)
6c•	Bottom Spiral Wound Gasket	AISI 316 + Graphite
7a	Thrust Bearing	UNS S20910
7b	Thrust Bearing Washer	AISI 316
7c	Key	AISI 316
7d	Screw	ISO 3506 A4 (AISI 316)
7e	Unloosening Washer	AISI 316
8a	Bearing	Aisi 304 Hard Faced
9a	Bracket	Carbon Steel
9b	Screw	Alloy Steel
10a	Bonnet	ASTM A351 gr. CF8M or AISI 316 Fabricated
10b	Bearing	AISI 304 Hard Faced
10c	Screw	ISO 3506 A2 (AISI 304)
10d	Bonnet Spiral Wound Gasket	AISI 316 + Graphite


Bearing Protector

8b	Bearing Pro	otector	Reinforced Graphite				
Bearing and Packing Flushing							
5h	Lantern Rir	ngAISI 316					
5m	Plug	AISI 316					
Live Loaded P	acking						

5n Belleville Spring Alloy Steel


10 (10) (10) (10) (10) (10) (10) (10) (1	Bracket & & & & & & & & & & & & & & & & & & &	20 20 20 2 Disc 3 Seal
So Sca Sco	5 Packing (optional)	© © © © © © © © © © © © © © © © © © ©
(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(a) (7b) (7c) (B)	8b 8c

	Extended bonnet - dimensions and weight								
S	ize	Trim		Trim		Trim		Trim	
in.	mm	Н	Bonnet Weight						
3	80	9.84	13.2	9.84	13.2	9.84	13.2	-	-
4	100	9.84	15.4	9.84	15.4	9.84	17.6	-	-
6	150	11.81	22	11.81	26.5	11.81	35.3	11.81	41.9
8	200	11.81	28.7	11.81	44.1	11.81	61.7	11.81	79.4
10	250	13.78	39.7	13.78	52.9	13.78	86	13.78	114.6
12	300	13.78	61.7	13.78	66.1	13.78	141.1	13.78	174.2
14	350	17.72	66.1	17.72	81.6	17.72	191.8	17.72	246.9
16	400	17.72	83.8	17.72	127.9	17.72	242.5	17.72	319.7
18	450	17.72	110.2	17.72	149.9	17.72	304.2	17.72	418.9
20	500	17.72	123.5	17.72	196.2	17.72	377	17.72	496
24	600	17.72	163.1	17.72	288.8	17.72	434.3	17.72	551.2
28	700	17.72	264.6	17.72	385.8	17.72	529.1	-	-
30	750	19.69	363.8	19.69	454.2	19.69	595.2	-	-
32	800	19.69	418.9	19.69	522.5	19.69	705.5	-	-
36	900	19.69	476.2	19.69	595.2	-	-	-	-
40	1000	19.69	551.2	19.69	661.4	-	-	-	-
42	1050	19.69	597.5	19.69	716.5	-	-	-	-
48	1200	19.69	705.5	19.69	848.8	-	-	-	-

- Trim A: Dp max. 150 psi (10 bar).
 Trim B: Dp max. 362 psi (25 bar).
 Trim C: Dp max. 725 psi (50 bar).
 Trim D: Dp max. 1595 psi (110 bar).
 Trim E: Dp max. 2320 psi (160 bar).
- 2. Dimensions are in inches and weight is in pounds.
- 3. Other materials are available on request.
- $\hfill \square$ The selection between cast and forged material depends on valve size.
- Suggested Spare Parts.

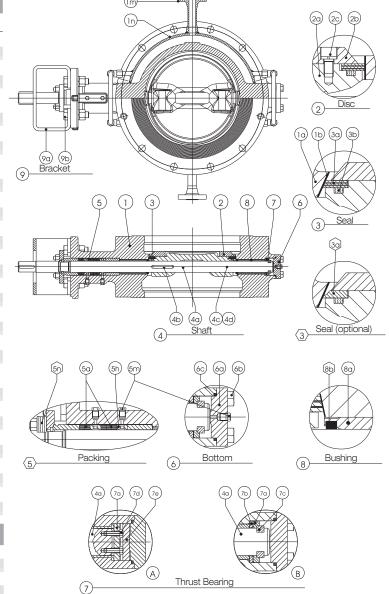
High Temperature Configuration

Materials selection						
ltem	Description	Body in CF8M				
1a	Body	ASTM A 351 CF8M				
1b	Body Seat	Stellite® gr. 21 Weld Overlay				
2a ⁻	Disc	ASTM A 351 CF8M or ASTM A 182 gr. F316				
2b	Retainer Flange	AISI 316				
2c	Screw	ASTM A 453 gr. 660				
3a•	Seal Ring	UNS S20910 or UNS S21800				
3b•	Disc Spiral Wound Gasket	AISI 316 + Graphite				
4a	Shaft	ASTM A479 Type XM19				
4b	Disc Key	UNS S20910				
4c	Pin	UNS S20910				
4d	Pin Retainer	AISI 316				
5a•	Packing	Graphite				
5b	Spacer	AISI 316				
5c	Packing Bushing	AISI 316				
5d	Stud Nut	ISO 3506 A2 (AISI 304)				
5e	Stud Bolts	ISO 3506 A2 (AISI 304)				
6a□	Bottom Flange	ASTM A 351 CF8M or ASTM A 240 gr. F316				
6b	Screw	ASTM A 453 gr. 660				
6c	Bottom Spiral Wound Gasket	AISI 316 + Graphite				
7a	Thrust Bearing	UNS S20910				
7b	Thrust Bearing Washer	Stellite® gr. 21				
7c	Key	AISI 316				
7d	Screw	ASTM A 453 gr. 660				
7e	Unloosening Washer	AISI 316				
8a	Bearing	AISI 316 Hard Faced				
9a	Bracket	Carbon Steel				
9b	Screw	Alloy Steel				
10a	Bonnet	ASTM A 351 CF8M				
10b	Bearing	AISI 304 Hard Faced				
10c	Screw	ASTM A 453 gr. 660				
10d	Bonnet Spiral Wound Gasket	AISI 316 + Graphite				

Options (available upon request)

Ī	Bearing Protector							
	8b	Bearing Protector	Reinforced Graphite					
-	Bearing and Packing Flushing							
	5h	Lantern Ring	AISI 316					
	5m	Plug	AISI 316					
-	Live Loaded Packing							
	5n	Belleville Spring	Alloy Steel					

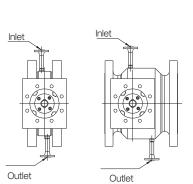
Extended bonnet H

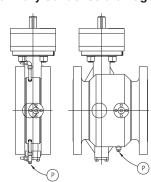

Notes

- Trim A: Dp max. 150 psi (10 bar).
 Trim B: Dp max. 362 psi (25 bar).
 Trim C: Dp max. 725 psi (50 bar).
 Trim D: Dp max. 1595 psi (110 bar).
 Trim E: Dp max. 2320 psi (160 bar).
- 2. Dimensions are in inches and weight is in pounds.
- 3. Other materials are available on request.
- ☐ The selection between cast and forged material depends on valve size.
- Suggested Spare Parts.

E	Extended bonnet - dimensions and weight								
s	ize	Trim	в	Trim	С	Trim	D	Trim	E
in.	mm	Н	Bonnet Weight	Н	Bonnet Weight	Н	Bonnet Weight	Н	Bonnet Weight
3	80	5.91	11.0	5.91	11.0	5.91	13.2	-	-
4	100	5.91	13.2	5.91	13.2	5.91	15.4	-	-
6	150	5.91	17.6	5.91	22.0	5.91	28.7	5.91	35.3
8	200	5.91	24.3	5.91	37.5	5.91	50.7	5.91	66.1
10	250	5.91	33.1	5.91	44.1	9.84	72.8	9.84	92.6
12	300	5.91	50.7	5.91	55.1	9.84	92.6	9.84	121.3
14	350	5.91	55.1	5.91	68.3	9.84	119.0	9.84	211.6
16	400	5.91	70.5	5.91	108.0	9.84	176.4	9.84	264.6
18	450	9.84	90.4	9.84	119.0	9.84	277.8	9.84	330.7
20	500	9.84	103.6	9.84	154.3	13.78	370.4	13.78	396.8
24	600	9.84	141.1	9.84	242.5	13.78	458.6	13.78	485.0
28	700	11.81	191.8	11.81	297.6	13.78	507.1	-	-
30	750	11.81	260.1	11.81	330.7	13.78	551.2	-	-
32	800	11.81	308.6	11.81	396.8	-	-	-	-
36	900	11.81	352.7	11.81	463.0	13.78	683.4	-	-
40	1000	11.81	396.8	11.81	507.1	-	-	-	-
42	1050	11.81	463.0	11.81	551.2	-	-	-	-
48	1200	11.81	507.1	11.81	617.3	-	-	-	-

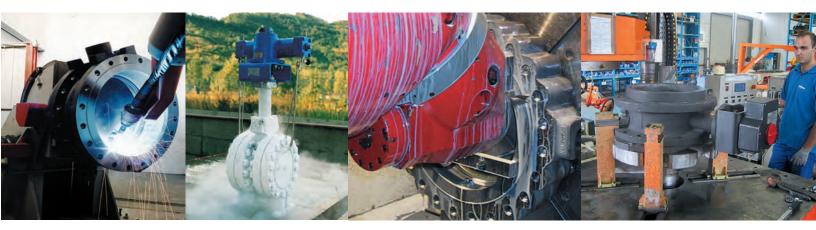
Steam Jacketed Configuration


tem	Description	Material
а	Body	ASTM A216 WCB
1b	Body Seat	Stellite® gr. 21 Weld Overlay
1m	Flanged Fitting	ASTM A105
1n	Body Jacket	ASTM A515 gr. 60
2a□	Disc	ASTM A216 WCB or ASTM A105
2b	Retainer Flange	ASTM A516
2c	Screw	ISO 3506 A4 (AISI 316)
3a•	Laminated Seal Ring	UNS S31803 (Duplex) + Graphite
3b•	Disc Spiral Wound Gasket	AISI 316 + Graphite
4a	Shaft	ASTM A182 F6a
4b	Disc Key	AISI 410
4c	Pin	AISI 410
4d	Pin Retainer	AISI 316
5a•	Packing	Graphite
5b	Spacer	AISI 316
5c	Packing Bushing	AISI 316
5d	Stud Nut	ISO 3506 A2 (AISI 304)
5e	Stud Bolts	ISO 3506 A2 (AISI 304)
5h	Lantern Ring	AISI 316
5m	Plug	AISI 316
6a	Bottom Flange	ASTM A516
6b	Screw	ISO 3506 A2 (AISI 304)
6c•	Bottom Spiral Wound Gasket	AISI 316 + Graphite
7a	Thrust Bearing	AISI 316 or AISI 410
7b	Thrust Bearing Washer	AISI 316
7c	Key	AISI 316
7d	Screw	ISO 3506 A4 (AISI 316)
7e	Unloosening Washer	AISI 410
8a	Bearing	AISI 304 Hard Faced
8b	Bearing Protector	Reinforced Graphite
9a	Bracket	Carbon Steel
9b	Screw	Alloy Steel


Options (available upon request)

Live Loaded Packing							
5n Belleville Spring Alloy Steel							
Seal Ring							
3a•	Seal Ring	UNS S17400					

Heating connections


Auxiliary condense drainage

Notes

- 1. For ND up to 12" (ANSI drilling), the heating connection flange dim. is $^{1}/^{2}$ " CI. 300 ANSI B16.5, RF 125÷250 µinch. For DN up to 300 mm (DIN and ISO 7005 drilling), the heating connection flange dim. is DN 15 PN 40, RF 12,5÷25 µm.
- For ND from 14" and larger (ANSI drilling), the heating connection flange dim. is ³/₄" Cl. 300 ANSI B16.5, RF 125÷250 µinch. For DN from 350 mm and larger (DIN and ISO 7005 drilling), the heating connection flange dim. is DN 20 PN 40, RF 12,5÷25 µm.
- 3. For ND up to 12", the auxiliary condense drainage (P) is $^3/8$ " NPT. For ND from 14" and larger, the auxiliary condense drainage (P) is $^1/2$ " NPT.
- 4. Vanessa recommends the horizontal shaft installation.
- 5. Other materials are available on request.
- $\hfill \Box$ The selection between cast and forged materials depends on valve size.
- Suggested spare parts.

Superior Manufacturing Expertise

Vanessa valves are manufactured at our technologically advanced, purpose-built factory in Northern Italy, where the 30,500 square metre site incorporates:

- 11,500 sq. m. manufacturing area (of which 1200 sq. m. is the new Integrated Manufacturing Cell - see details below)
- 1,800 sq. m. office accommodation.

The utilization of advanced 3D design software, state-of-the-art machine tools and the most modern production process technology ensures the consistent levels of high performance and quality of production for which Vanessa is well known.

Advanced manufacturing facilities include:

- CNC flexible machining centres for turning, drilling and milling of bodies and discs for all sizes
- Horizontal CNC boring machining centre with multi-pallet station to machine bodies and discs up to very large sizes (up to 92")
- Welding robot system equipped with several welding stations
- Full cryogenic testing facilities in-house
- Final testing machines for any valve size complete with digital instrumentation to monitor the seating torque
- Surface treatment system using water based, environmentally low-impact, anticorrosive products
- Ultrasonic bath cleaning equipment specific for valves in oxidative services
- Three dimensional measuring machine for maximum measuring accuracy
- Magnetic particle examination equipment
 Spectrotest meter for positive material identification
- Helium mass spectrometer analyzer.

Quality Audits

The Vanessa plant operates under a Quality Assurance system which is in accordance with UNI EN ISO 9001.

The plant has held approval certificates for many years, from both major customers and independent authorities such as:

Det Norske Veritas, Italy (ISO 9001)

TUV (Ad-Merkblatt HP 0 - TRB 801 nr.45)

In addition, DNV has certified the plant to be in compliance with the standard for Environmental Management Systems (UNI EN ISO 14001).

Integrated Manufacturing Cell (IMC)

The company has invested in a fully independent production facility, known as the Integrated Manufacturing Cell (IMC).

The IMC has been conceived as a 'focused factory', to concentrate exclusively on a selected range of valves (ND 3"-24" Cl. 150-300) and incorporates advanced manufacturing techniques based on Demand Flow Technology (DFT).

Utilizing Kanban process systems under a Total Quality Control (TQC) program, has enabled Vanessa to reduce the manufacturing lead time for the target product range to 2-4 weeks, ex works.

Industries and Applications

Vanessa valves have an impressive track record of service in both isolation and control applications in all process industries including:

- Oil and Gas Processing
- Offshore Platforms
- Refineries
- Hydrocarbons Storage and Transportation
- Liquid Natural Gas (LNG) Storage and Transportation
- Chemical and Petrochemicals Plants
- Power Generation
- District Heating
- Pulp and Paper
- Steel Mills
- Sugar Mills
- Desalination Plants
- Water Treatment and Distribution

Vanessa has extensive experience of supplying valves for a wide variety of fluids including:

- Hydrocarbons
- Steam (Saturated and Superheated)
- Geothermal Steam
- Hydrogen
- Oxygen
- Cryogenic Fluids
- Hot Gases
- Sulphur (Tail Gas)
- Chemical Solvents
- Chlorinated Solvents
- Flare Gas

HP Butterfly Valves

Ball Valves

Gate Valves

Vanessa Valves

→ Zero Leakage Standard

Vanessa's Series 30,000 valves are bi-directionally tested to rigid zero leakage standard of both API 598 and API 6D.

Resilient Metal Seal

Vanessa's torque-generated resilient metal seal provides the ultimate seating performance long-term, repeatable zero leakage performance under most severe service conditions.

Quarter-Turn Operation

Fugitive emissions are greatly reduced. Automation is simplified. Compactness imposes less stress on pipe.

♦ ♦ All-Metal Construction

Temperature limits inherent to soft-seated valves do not affect the all-metal construction of Vanessa Series 30,00 valves.

♦ ♦ Bi-Directional

The Vanessa Series 30,000 valve provides bi-directional, zero leakage shutoff.

♦ Inherently Firesafe

All-metal construction in combination with zero leakage performance equals inherently firesafe. The Series 30,000 is zero leakage before, during, and after a fire test.

♦ Non-Rubbing Design

The Series 30,000's unique triple offset design eliminates all rubbing and resulting wear during the entire 90 degrees of travel.

Double-Flange Body

Standard double-flange end connections (ISO 5752) offer greater ease of installation and maintenance in a compact configuration.

◆ Available ANSI B16.10 F-F

Vanessa's 30,000 QTL easily permits direct replacement of most gate, ball, and globe valves.

Available API 609 F-F

Vanessa's 30,000 QTL lug pattern and QTW wafer pattern easily permits direct upgrade from high performance butterfly valves to obtain the performance standard of Vanessa.

Lightweight

A lower weight valve (compared with gate, ball and plug valves) means lower piping stresses, less maintenance and lower construction costs.

ANSI 150, 300, 600, 900

Pressure classes matching gate and ball valves.

3-inch to 72-inch Size Range

Sizes to suit virtually all applications.

♦ ♦ Cryogenic to -400°F

High Temperature to 1500°F

Metal-seated performance with far better shutoff than soft seated valves in temperature affected applications.

Easily Automated

Quarter-turn operation reduces time and cost to automate.

Quick Operation

Vanessa's quarter-turn valves operate as quick as 0.15 seconds.

Tyco Flow Control (TFC) provides the information herein in good faith but makes no representation as to its comprehensiveness or accuracy. This data sheet is intended only as a guide to TFC products and services. Individuals using this data sheet must exercise their independent judgment in evaluating product selection and determining product appropriateness for their particular purpose and system requirements. TFC MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT(S) TO WHICH THE INFORMATION ANY EFFERS. ACCORDINGLY, TFC WILL NOT BE RESPONSIBLE FOR DAMAGES (OF ANY KIND OR NATURE, INCLUDING INCIDENTAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES) RESULTING FROM THE USE OF OR RELIANCE UPON THIS INFORMATION. Patents and Patents Pending in the U.S. and foreign countries. Tyco reserves the right to change product designs and specifications without notice.